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Assortment Optimization for Matching Patients and Providers

Abstract1

Strong patient-provider relationships are crit-2

ical for effective healthcare delivery. How-3

ever, high provider turnover rates lead to situa-4

tions where patients lack providers, which poses5

a significant logistical challenge. We address6

this by proposing automated patient-provider7

matching algorithms. We formulate patient-8

provider matching as an instance of assortment9

optimization, where patients are offered a set10

of provider options and respond sequentially.11

We then develop solutions built upon bipar-12

tite matching and demonstrate that our algo-13

rithms have approximation guarantees and im-14

prove match quality compared to baselines.15

Keywords: Matching, Patient, Provider,16

Healthcare Operations, Assortment Planning17

Data and Code Availability We use syn-18

thetically generated data, we plan to share the19

code/dataset, and attach an anonymized repository.20

Institutional Review Board (IRB) Our work21

does not require an IRB.22

1. Introduction23

While providers play an essential role in the health-24

care system (Pearson and Raeke, 2000; Wu et al.,25

2022), high provider turnover rates frequently leave26

patients without a provider and disrupt patient27

care (Reddy et al., 2015) This problem is especially28

pressing in primary care due to the need for care con-29

tinuity (Kajaria-Montag et al., 2024). In these sit-30

uations, healthcare administrators can manually re-31

match patients, but doing so is costly and inefficient.32

We address these logistical burdens by studying al-33

gorithms for patient-provider matching. To allow for34

patients to have agency, we frame the problem using35

an assortment optimization framework so each pa-36

tient receives a “menu” of potential providers from37

which to choose (Shi, 2016; Rios and Torrico, 2023;38

Davis et al., 2013). We release menus for all patients39

upfront (e.g. through a patient portal) then let pa-40

tients respond and select providers. Because patient41

response order is random, prior work in assortment42

optimization fails to solve this problem, so we develop 43

new matching algorithms that achieve good theoret- 44

ical and empirical performance. 45

Our contributions are: (1) we formalize the 46

patient-provider matching problem using assortment 47

optimization, (2) we develop algorithms for patient- 48

provider matching using bipartite matching, and (3) 49

we validate our algorithms theoretically, through ap- 50

proximation bounds, and empirically, through im- 51

proved match quality on a synthetic dataset. 52

2. Problem Setup 53

An instance of the patient-provider matching prob- 54

lem consists of N patients and M providers. A 55

match between patient i and provider j has match 56

quality θi,j . Match quality encompasses factors that 57

impact patient-provider relationships such as insur- 58

ance compatibility, physical distance, and language 59

concordance (Manson, 1988). We can learn match 60

quality from data, such as patient surveys and clin- 61

ical records, and use this to predict patient-provider 62

compatibility. We note that match quality must be 63

learned carefully to avoid perpetuating biases (Rogo- 64

Gupta et al., 2018). 65

We offer menus x1,x2, . . . ,xN upfront to patients. 66

Each menu, xi ∈ {0, 1}M , details which providers are 67

offered to patient i, where xi,j = 1 indicates provider 68

j is offered to patient i. Patients then respond se- 69

quentially in a random order π = π1, π2, . . . , πN , 70

where πt is the t
th patient. Menus are offered upfront 71

to reduce logistical burden, while patients respond in 72

random order because each makes their selection at 73

a random time. Patients select providers based on 74

a choice function f(xπt
,yt) ∈ {0, 1}M , a 0-1 vector 75

denoting which provider (if any) is selected. Here, 76

yt ∈ {0, 1}M indicates which providers are available 77

when patient πt is making a decision. Initially, all 78

providers are available, y1,j = 1, and providers tran- 79

sition from available to unavailable upon selection: 80

yt,j = yt−1,j(1− f(xπt−1
,yt−1)j). 81

We select menus to optimize for match rate, 82

1
N

∑N
i=1

∑M
j=1 f(xπi

,yi)j , and match quality, 83

1
N

∑N
i=1

∑M
j=1 f(xπi ,yi)jθi,j , selecting these due to 84
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the needs of our healthcare partners. Each objective85

is optimized over all patient response orderings:86

max
x

Eπ[
1

N

N∑
i=1

M∑
j=1

f(xπi
,yi)jθi,j ] (1)

We focus on f as a uniform choice model. We de-87

fine a uniform choice model as follows: with prob-88

ability p, a patient selects their most preferred (i.e.89

highest match quality) available provider, and with90

probability 1− p, selects no provider, for fixed p. We91

selected this due to its simplicity and flexibility; we92

leave investigation into alternative models for future93

work.94

3. Algorithms for Matching95

3.1. Greedy Algorithms96

Greedy solutions to the patient-provider matching97

problem offer all providers to all patients:98

Definition 1 Greedy Menu - We define the greedy99

menu, xG, as xG
i,j = 1 for all i and j.100

While greedy approaches perform well in other assort-101

ment optimization tasks (Aouad and Saban, 2023),102

here greedy approaches result in poor matches:103

Lemma 2 Consider an instance of the assortment104

optimization problem with N patients, M providers,105

and match quality θ. Let xG
i,j be the greedy menu. Let106

f(xπt ,yt) be the uniform choice model with parameter107

p. Then let the match quality of the greedy algo-108

rithm be ALG = Eπ[
1
N

∑N
i=1

∑M
j=1 f(x

G
πi
,yi)jθi,j ]109

and let the optimal solution be OPT =110

maxx Eπ[
1
N

∑N
i=1

∑M
j=1 f(xπi

,yi)jθi,j ] Then, for111

any p and ϵ, there exists θ and N , so ALG ≤ ϵOPT.112

We prove this by constructing scenarios where greedy113

menus achieve O(ϵ) reward (proofs in Appendix C).114

3.2. Bipartite Matching Algorithm115

To improve upon greedy solutions, we propose an al-116

gorithm based on bipartite matching. We first solve117

a bipartite matching problem between patients and118

providers, with edge weights θi,j , and offer each pa-119

tient their corresponding bipartite match.120

Definition 3 Bipartite Matching Menu - Let zi,j121

be the optimal solution to the bipartite matching prob-122

lem between N patients and M providers with coef-123

ficients θi,j and 1-1 matching constraints. Then the124

bipartite matching menu, xB, is xB
i,j = zi,j.125

Our bipartite matching algorithm avoids the pitfalls 126

of greedy solutions because it considers matches glob- 127

ally, which improves performance guarantees: 128

Theorem 4 Consider an instance of the assort- 129

ment optimization problem with N , M , θ. Let 130

f(xπt ,yt) be the uniform choice model with param- 131

eter p. Let xB
i be the bipartite matching menu. 132

Let ALG = Eπ[
1
N

∑N
i=1

∑M
j=1 f(x

B
πi
,yi)jθi,j ] and 133

let OPT = maxx Eπ[
1
N

∑N
i=1

∑M
j=1 f(xπi ,yi)jθπi,j ]. 134

Then ALG ≥ pOPT. 135

We prove this by upper bounding the optimal match 136

rate with a bipartite matching problem, then showing 137

that our algorithm achieves a p-fraction of this value. 138

3.3. Grouping Algorithm 139

To improve the performance of our algorithm for 140

small p, we augment the bipartite matching menu 141

with more options for patients. We do so by selec- 142

tively grouping patients and aggregating their menus. 143

For example, we might group patients 1, 2, and 3 so 144

that each has a menu of providers X, Y, and Z. 145

Our procedure starts by considering all subsets of 146

exactly B patients. For each subset, we compute the 147

change in expected match quality from aggregating 148

their menus, which we call α. We then sort all α 149

values in descending order and form groups greed- 150

ily: subsets with higher α become groups, and sub- 151

sets only become groups if all members are still “un- 152

grouped.” We repeat this for subsets of size B − 1 153

to 2 and any “ungrouped” patient keeps their single 154

bipartite match. We present details in Algorithm 1. 155

We select such an approach because it improves 156

match quality while preserving match rate, the only 157

such augmenting method that does so: 158

Lemma 5 Consider an instance of the patient- 159

provider matching problem where N = M with match 160

quality θ. Let zi,j be the 1-1 bipartite matching so- 161

lution, yielding an assortment xB. Let vi = j if 162

zi,j = 1. Next, consider a set of augmentations de- 163

noted through a graph G = (V,E), where nodes corre- 164

spond to patients, and an edge from i to i′ means that 165

xi′,vi = 1. Then each patient is offered at least one 166

available provider if and only if the graph G consists 167

of connected components that are each complete. 168

We prove this by constructing patient orderings so 169

that non-complete graphs result in patients with 170

empty menus, demonstrating that only group-based 171

algorithms guarantee non-empty menus. 172
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Figure 1: Bipartite matching algorithms outperform random and greedy baselines for uniformly distributed
θ Group-based approaches build upon bipartite matching, and its improvement is most pronounced
when p is small and θ is normally distributed, due to the need to reoffer providers.

Algorithm 1 Grouping algorithm

Input: Bipartite Menu, xB , and match quality θ
Output: Grouping menu, xR

Let vi = j if xB
i = j

Let ci = 1 for 1 ≤ i ≤ N
Initialize xR = xB

for k = B to 2 do
for all S ⊆ {1, . . . , N}, |S| = k do

Let x′ = xR and x′
i,vj

= 1 for all i, j ∈ S

Let αS = Eπ[
∑

i∈S

∑M
j=1 f(x

′
πi
,yi)jθπi,j ] −

Eπ[
∑

i∈S

∑M
j=1 f(x

B
πi
,yi)jθπi,j ]

end for
Let α′

1, α
′
2, . . . , α

′
l be α sorted in descending or-

der, with corresponding subsets S1, S2, . . . , Sl

for i = 1 to l do
if cj = 1 for all j ∈ Si and α′

i > 0 then
Let xR

j,vj′
= 1 for all j, j′ ∈ Si

Let cj = 0 for all j ∈ Si

end if
end for

end for

4. Experiments173

4.1. Experimental Setup + Datasets174

We compare our algorithms against random and175

greedy baselines on a synthetic dataset. We con-176

struct our synthetic dataset by randomly generat- 177

ing θ according to one of two distributions: (i) uni- 178

form: θi,j ∼ U(0, 1) and (ii) normal: θi,j ∼ N (µj , σ), 179

µj ∼ U(0, 1). The former corresponds to situations 180

where all match qualities are independent, while the 181

latter corresponds to more and less popular providers. 182

Because our algorithms maximize match rate (see 183

Lemma 5), we compare algorithms according to the 184

normalized match quality, which is the match quality 185

divided by that of the random algorithm. We include 186

further details in Appendix B. 187

4.2. Algorithm Comparison 188

We compare our algorithm to greedy and random 189

baselines while varying θ and p. We fix N = M = 25, 190

vary p ∈ {0.1, 0.25, 0.5, 0.75, 0.9}, and vary θi,j to be 191

either uniformly or normally distributed. 192

In Figure 1, we show that when p ≥ 0.25 our group- 193

based algorithm outperforms baselines (p < 0.005). 194

When θ is uniformly distributed, group-based algo- 195

rithms outperform baselines by at least 13%, while 196

for normally distributed θ with p ≥ 0.25, group-based 197

algorithms outperform all baselines by at least 4%. 198

Group-based algorithms perform poorly for p = 0.1 199

because the low match rate encourages larger menus; 200

one solution is to increase menu size B. 201

Our bipartite matching and group-based algo- 202

rithms perform similarly to each other for uniformly 203
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Figure 2: Our bipartite matching and group-based
algorithms offer the biggest improvement
over baselines when N is large, as larger N
increases problem complexity.

distributed θ (within 3%), while for normally dis-204

tributed θ with p ≤ 0.75, group-based algorithms205

are better (p < 0.0001). For normally distributed206

θ it is advantageous to reoffer a provider to multiple207

patients, which is why group-based outperforms bi-208

partite matching; this is because popular providers209

should be offered to various patients.210

4.3. Varying Patients and Providers211

To understand the impact of patient and provider212

numbers on algorithm performance we vary N and213

M . We vary N = M ∈ {5, 10, 25, 50, 100} while let-214

ting p = 0.5 and θ be uniformly distributed. In Ap-215

pendix A, we experiment with settings whereN ̸= M .216

In Figure 2, we find that larger N or M increases217

the gap between baselines and our algorithms. When218

N = 5, we see that greedy and bipartite matching219

algorithms perform similarly (within 3%). However,220

for N ≥ 10, greedy algorithms perform worse than221

both of our methods (p < 0.001), which occurs due222

to increased problem complexity with large N .223

5. Related Works224

To construct patient-provider matches, prior work225

has investigated algorithms using techniques includ-226

ing genetic programming (Zhu et al., 2023), clus-227

tering (Chen et al., 2019), and deferred accep-228

tance (Chen et al., 2020). These works consider 229

matching in a batch setting, and we extend these 230

ideas into a sequential setting with patient deferrals. 231

We frame patient-provider matching using assort- 232

ment optimization, a technique that has been ap- 233

plied to domains including retail (Aouad and Sa- 234

ban, 2023), school choice (Shi, 2016), and matching 235

markets (Rios and Torrico, 2023). Within assort- 236

ment optimization, different response settings have 237

been studied, including online response, where agents 238

make choices sequentially (Aouad and Saban, 2023), 239

and offline response, where agents make choices in- 240

batch (Davis et al., 2013). Our work can be seen as 241

an intermediate between these two extremes. 242

Our work can leverage clinical information to com- 243

pute match qualities, θ. For example, prior work has 244

discussed factors that impact patient-provider rela- 245

tionships, including gender (Greenwood et al., 2018), 246

race (Greenwood et al., 2020), and language (Man- 247

son, 1988). We focus on patient-provider match qual- 248

ity because it can impact downstream health out- 249

comes, such as medication intake (Nguyen et al., 250

2020), and mortality rate (Alsan et al., 2019). 251

6. Conclusion and Real-World Impact 252

Strong patient-provider relationships are key to pre- 253

ventive care, but patients are frequently left with- 254

out any provider. To address this, we propose algo- 255

rithms to automatically match patients and providers 256

through an assortment optimization. We demon- 257

strate approximation guarantees for our algorithms 258

and show that our algorithms improve upon baselines 259

on a synthetic dataset. We provide three research di- 260

rections to help bring such algorithms to practice: 261

1. Provider workload balance - Our algo- 262

rithms currently optimize for match quality, but 263

provider-side objectives such as provider work- 264

load balance should impact matches. 265

2. Varied Choices Models - Alternate choice 266

models might better capture patient decision- 267

making and lead to more realistic models. 268

3. Real data - We are currently working with 269

healthcare partners to obtain real-world data 270

that allows us to better estimate N , M , and θ. 271
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Appendix A. Other Choices of352

Patients and Providers353

We evaluate the impact of varying N ∈354

{5, 10, 25, 50, 100} while fixing M = 25, and355

varying N ∈ {5, 10, 25, 50, 100} while fixing M = 25,356

and plot this in Figure 3. We find that when N ≤ M ,357

our algorithm performs better than baselines. How-358

ever, when N is much larger than M , we find that359

baselines can perform better. This is due to provider360

scarcity, making it important to show any provider,361

even with low match quality.362

Appendix B. Experimental Details363

We run experiments for 6 seeds and 10 trials per seed.364

We resample θ for different seeds and fix θ but vary365

π for different trials. We let B = 3 for all experi-366

ments, and restrict menus to be of size at most R = 5367

to model real-world scenarios (where patient menus368

cannot be of arbitrary size). For menus larger than369

R, we randomly sample a subset of the menu.370

Appendix C. Proofs371

Lemma 2:372

Consider an instance of the assortment optimiza-373

tion problem with N patients, M providers, and374

match quality θi,j . Let xG
i,j be the greedy375

menu. Let f(xπt
,yt) be the uniform choice376

model with parameter p. Then let the match377

quality of the greedy algorithm be Let ALG =378

Eπ[
1
N

∑N
i=1

∑M
j=1 f(x

G
πi
,yi)jθi,j ] and let the optimal379

solution be380

OPT = max
x

Eπ[
1

N

N∑
i=1

M∑
j=1

f(xπi ,yi)jθi,j ] (2)

Then, for any p and ϵ, there exists some θi,j and N ,381

so that ALG ≤ ϵOPT382

Proof We construct a problem instance where the383

greedy algorithm performs an ϵ fraction of the opti-384

mal algorithm; that is ALG ≤ ϵOPT. To do so, we385

consider an instance of the assortment optimization386

problem with N = M patients and providers. Let387

θ1,1 = 1, while θi,1 = 2δ for i ̸= 1, where δ ≤ 1
2 .388

Let θi,j = δ for all i and for j ̸= 1. In other words,389

provider 1 has a match quality of 1 with patient 1, and390

2δ for all other patients. All other provider-patient391

pairs have a match quality of δ.392

In this scenario, the optimal selection is to let xi = 393

ei, so that each patient gets a menu of size one, with 394

only provider i being available. This results in an ex- 395

pected total match quality of OPT = p(δ(N−1)+1). 396

Note that this corresponds to the bipartite matching 397

algorithm. 398

Next, consider the greedy algorithm, where xi = 1. 399

Note that all patients prefer provider j = 1. By sym- 400

metry, each patient has an equal chance of receiving 401

provider j = 1. Therefore, with probability at most 402

1
N , patient i is first (that is π1 = i). therefore, with 403

probability 1
N , π1 = i, and we receive a match qual- 404

ity of 1, while with probability 1 − 1
N , we receive a 405

match quality of 2δ. For all the M − 1 = N − 1 other 406

providers, we receive a utility of δ, with a probabil- 407

ity p of accepting each. Combining gives that our 408

expected total utility is 1
N + 2δ(N−1)

N + p(N − 1)δ. 409

Therefore, we get the following: 410

ALG

OPT

=
1
N + 2δ(N−1)

N + p(N − 1)δ

p(δ(N − 1) + 1)

≤
1
N + 2δ + p(N − 1)δ

p(δ(N − 1) + 1)
≤

1
N + 2δ + p(N − 1)δ

p

≤ 1

Np
+ 2

δ

p
+Nδ

We let 1
Np ≤ ϵ

3 , so we let N = 3
ϵp . Additionally, we 411

let Nδ ≤ ϵ
3 , so δ ≤ ϵ

3N , and 2 δ
p ≤ ϵ

3 = δ ≤ 2pϵ
3 . 412

Letting δ = min( 2pϵ3 , ϵ
3N ), shows that 413

ALG

OPT
≤ 1

Np
+ 2

δ

p
+Nδ ≤ ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ (3)

Therefore, for any choice of ϵ and p, there exists a 414

choice of N and θ (implicitly chosen through δ), so 415

that ALG ≤ ϵOPT. 416

Theorem 4: 417

Let π be unknown, so that we aim to maximize: 418

max
x

Eπ[
1

N

N∑
i=1

M∑
j=1

f(xπi
,yi)jθi,j ] (4)

Let xM
i be the bipartite matching menu. 419

Then let resulting objective value be ALG = 420

Eπ[
1
N

∑N
i=1

∑M
j=1 f(x

M
πi
,yi)jθi,j ] and let the optimal 421

solution be 422

OPT = max
x

Eπ[
1

N

N∑
i=1

M∑
j=1

f(xπi
,yi)jθπi,j ] (5)
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Figure 3: We evaluate scenarios with M ̸= N , fixing M = 25 while varying N , and vice versa. In most
situations, our algorithm outperforms baselines, while only in situations where N > M do baselines
outperform our method. This occurs due to provider scarcity, requiring us to match with every
provider, which greedy algorithms do well.
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Then ALG ≥ pOPT.423

Proof First, in our offering of the bipartite matching424

menu, we note that each patient is only offered one425

provider, and no provider is offered to more than one426

patient. Under this scenario, the results of each pa-427

tient are independent Bernoulli variables, with proba-428

bility of success p, scaled by the appropriate θ values.429

That is, the expected match quality is
∑N

i=1 x
B
i,jθi,jp430

Next, suppose that there exists some allocation of431

menus so that the match quality under such an assort-432

ment is higher than that of the corresponding linear433

program. Let the matches from such an allocation434

be denoted ui,j . Then
∑N

i=1 ui,jθi,j >
∑N

i=1 x
B
i,jθi,j .435

However, such a statement is a contradiction, as436

by the definition of z, it maximizes
∑N

i=1 x
B
i,jθi,j .437

Therefore, no solution can improve upon the match438

quality of the bipartite match, which implies that439

OPT ≤
∑N

i=1 x
B
i,jθi,j , while ALG = p

∑N
i=1 x

B
i,jθi,j ,440

so our algorithm achieves a reward of pOPT.441

Lemma 5:442

Consider a situation where N = M . Let zi,j be the 1-443

1 bipartite matching solution to a problem with coef-444

ficients θi,j . Let vi = j if zi,j = 1. Consider the bipar-445

tite matching assortment, xB
i Next, consider a set of446

augmentations denoted through a graph G = (V,E),447

where nodes correspond to patients, and an edge from448

i to i′ means that xi′,vi = 1. Then each patient is of-449

fered at least one available provider if and only if the450

graph G consists of connected components that are451

each connected.452

Proof We will first prove the forward direction; that453

if the set of assortments is complete, then the result-454

ing menu is non-empty. Consider patient i in a com-455

plete graph of size k, so that the size of the menu for456

patient i is also k. Each time a member of the com-457

plete graph, i′ is chosen before i in the ordering π, the458

set of available options in the menu decreases by 1.459

Because there are k members in the complete graph,460

at most k − 1 things can come before i in the order-461

ing, and so the menu size is at least k − (k − 1) = 1,462

which implies the menu is non-empty.463

Next, we will prove that if the resulting menu is464

always non-empty, then the underlying graph must be465

a complete graph structure. We first consider some466

node u in the graph, corresponding to some patients.467

Suppose that u has a menu of size k, indicating that468

there exist k edges from u to some node. Suppose469

that there exists a node, v such that (v, u) is an edge,470

but (u, v) is not. Then consider the ordering that 471

places u after its neighbors and v. In this ordering, 472

we let patient v have u on its menu, and we suppose 473

that v selects the provider assigned to u. Next, we let 474

each of the neighbors for u, i, select themselves. This 475

results in neither u nor its neighbors being available 476

when umust select a patient, leaving an empty menu. 477

Therefore, for menus to be non-empty, it must be 478

the case that any edge (i, u) must also have (u, i). 479

Next, we consider the scenario where there exists a 480

node w such that w is a two-hop neighbor of u but 481

not an immediate neighbor of u. Suppose w is ad- 482

jacent to v, so that v is on w’s menu. Order the 483

patients such that w comes first, then u’s neighbors, 484

then u. Let w select v, let v select u, and let all of 485

u’s other neighbors select themselves. This results in 486

an empty menu for u; therefore, when all menus are 487

nonempty, there must not exist any two-hop neigh- 488

bors that are not also one-hop neighbors. Because 489

this is undirected as shown before, for any node, all 490

of its neighbors are a distance 1 away. Therefore, 491

in any component, it is the case that all nodes are 492

connected. This implies that the graph consists of 493

complete graphs. 494
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