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Healthcare: How Long Do
Patients Have To Wait?

Average waiting time for a doctor’s appointment and for
non-emergency surgery in 2023 (in days)
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Facts < Figures

Numbers alone can't express the work of our colleagues, and our impact on our communities.
But data explains the breadth and depth of our commitment in service of our mission: “To improve the health and healing of all”
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of medical practices had
physicians retire early or
leave due to burnout in 2021.
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of medical groups have had a
physician retire early or leave
due to burnout this year.

27%

YES

5%
UNSURE

MGMA Stat poll. October 26, 2021 | Have p
930 responses



8.8

BILLION

Estimated annual
costs of physician
burnout, attributed to
turnover and reduced
clinical hours
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Push Towards Centralization

Book a Doctor, In All Areas
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Dr Johanna Hartmann  Dr Paul Holland Dr Stephanie Zhang Dr Susan Grey Dr Thomas Richards
Orthopaedic Surgeon Orthopaedic Surgeon Orthopaedic Surgeon Orthopaedic Surgeon Orthopaedic Surgeon
Upcomlng Appomtments
Appointment ttend You Pay

Follow Up

With Dr Susan Grey @ Sydney $150.00

When Wednesday, 27 January 2021 at 10:00am - 10:15am estimated rebate $75.05

Where Sydney, Level 9 70 Pitt St SYDNEY NSW 2000

What to Do
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How does patient choice
impact overall utility and
fairness?
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Three Components
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Which providers should we offer to each patient? )
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Offline Offering and Online Matching
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Offline Offering and Online Matching
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Upfront Patient Response ' Final Matches
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Offline Matching
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Disadvantage: No Autonomy
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Why Offline-Online Hybrid?

Offline Matching Online Matching
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Disadvantage: No Autonomy Disadvantage: Patients might wait to

match; incentive compatibility -
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Beneficial when there’s
uncertainty in patient selections
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Two Extreme PollCIeS -

Pairwise

Beneficial when patient choices
are known & determinstic
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Going beyond the Extremes
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Going beyond the Extremes
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Match Quality

Impact of Patient/Provider Ratio
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Impact of Match Probability
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Constructing a Semi-Synthetic Dataset

We build a dataset
mimicking the Hartford
Healthcare system
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Constructing a Semi-Synthetic Dataset

We build a dataset
mimicking the Hartford
Healthcare system

#Patients/Providers (N/M) Choice Model Match Quality
1225 patients and 700 Patients have a fixed  Incorporates provider
providers; mimics the probability of proximity and

effects of one provider matching after utility = comorbidities present

dropping out reaches a threshold
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Match Quality Comparison
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Who actually gets Matched?
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Who actually gets Matched?
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Tension between Fairness and Match Rate/Quality
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Tension between Fairness and Match Rate/Quality
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Takeaways

Tailoring policies improves match quality.
However, high match quality can lead to
poor performance on other outcomes of
interest, such as fairness.
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Insights for Practitioners

Patient choice becomes more useful under uncertainty
i Metrics such as fairness and match quality can be in tension

Underlying factors might impact who gets matched
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