Hello! I'm a second year PhD student in the Machine Learning Department at Carnegie Mellon University, advised by Fei Fang, and funded by an NSF Fellowship.
My research focuses on improving machine learning for decision making, with a particular focus on matching systems in real-world applications.
This includes work on intepretability [NeurIPs'23 XAI,ICML'24], matching systems [IJCAI'21, NeurIPS'21 WHMD], and my current work on bandits for volunteer notification in food rescue platforms [NeurIPS'24].
I'm interested in tackling the following questions:
Most recent publications on Google Scholar.
‡ indicates equal contribution.
Assortment Optimization for Matching Patients and Providers
Naveen Raman, Holly Wiberg
Under Submission
Global Rewards in Restless Multi-Armed Bandits
Naveen Raman, Ryan Shi, Fei Fang
NeurIPS '24
Understanding Inter-Concept Relationships in Concept-Based Models
Naveen Raman, Mateo Espinosa Zarlenga, Mateja Jamnik
ICML '24
Do Concept Bottleneck Models Obey Locality?
Naveen Raman, Mateo Espinosa Zarlenga, Juyeon Heo, Mateja Jamnik
NeurIPS '23 XAI: Past, Present, and Future Workshop
Human Uncertainty in Concept-Based AI Systems
Katherine M. Collins, Matthew Barker, Mateo Espinosa Zarlenga, Naveen Raman, Umang Bhatt, Mateja Jamnik, Ilia Sucholutsky, Adrian Weller, Krishnamurthy Dvijotham
AIES '23
Improving Learning-to-Defer Algorithms Through Fine-Tuning
Naveen Raman, Michael Yee
NeurIPS '21 Human and Machine Decisions Workshop
Data-Driven Methods for Balancing Fairness and Efficiency in Ride-Pooling
Naveen Raman, Sanket Shah, John Dickerson
IJCAI '21
Assortment Optimization for Matching Patients and Providers
Naveen Raman, Holly Wiberg
Under Submission
Global Rewards in Restless Multi-Armed Bandits
Naveen Raman, Ryan Shi, Fei Fang
NeurIPS '24
Understanding Inter-Concept Relationships in Concept-Based Models
Naveen Raman, Mateo Espinosa Zarlenga, Mateja Jamnik
ICML '24
Do Concept Bottleneck Models Obey Locality?
Naveen Raman, Mateo Espinosa Zarlenga, Juyeon Heo, Mateja Jamnik
NeurIPS '23 XAI: Past, Present, and Future Workshop
Human Uncertainty in Concept-Based AI Systems
Katherine M. Collins, Matthew Barker, Mateo Espinosa Zarlenga, Naveen Raman, Umang Bhatt, Mateja Jamnik, Ilia Sucholutsky, Adrian Weller, Krishnamurthy Dvijotham
AIES '23
Improving Learning-to-Defer Algorithms Through Fine-Tuning
Naveen Raman, Michael Yee
NeurIPS '21 Human and Machine Decisions Workshop
Eliciting Bias in Question Answering Models through Ambiguity
Andrew Mao‡, Naveen Raman‡, Matthew Shu, Eric Li, Franklin Yang, Jordan Boyd-Graber
EMNLP '21 Machine Reading for Question Answering Workshop
Data-Driven Methods for Balancing Fairness and Efficiency in Ride-Pooling
Naveen Raman, Sanket Shah, John Dickerson
IJCAI '21
What more can Entity Linking do for Question Answering
Naveen Raman, Pedro Rodriguez, Jordan Boyd-Graber
NeurIPS '20: Human And Machine in-the-Loop Evaluation and Learning Strategies Workshop
Stress and Burnout in Open Source: Toward Finding, Understanding, and Mitigating Unhealthy Interactions.
Naveen Raman, Minxuan Cao, Yulia Tsvetkov, Christian Kaestner, Bogdan Vasilescu
ICSE '20 (NIER Track)